传统的飞机大部件对接主要靠工装和工艺补偿来保证大部件之间的协调,在对接部件留余量,采用吊车与牵引配合进行对接,最后进行精加工[1]。这种对接方法精度低、可靠性差,极易出现超差问题,容易造成无法逆转的飞机水平测量参数。
飞机大部件数字化自动对接系统用于实现大部件空中姿态位置的实时控制、调整,并完成调姿后的驱动与对接[2-4],主要由自动定位器、测量系统、控制系统和调姿集成软件系统组成。在自动对接过程中,首先通过测量系统,进行大部件位置的准确测量,进行装配轨迹规划后将数据传递给定位器,通过伺服电机带动自动定位器进行X、Y、Z 3个方向的自由移动以及绕X、Y、Z 3个方向的旋转,从而实现飞机大部件的精确定位,完成对接。
本文结合ARJ21介绍飞机大部件数字化自动对接装配系统。 数字化大尺度测量场构建
要解决大部件间的准确对接,首先要解决的是获得大部件间准确的相对位置关系,即部件空间位置的准确测量。与其他测量要求不同,飞机大部件空间位置测量具有对象尺寸大、测量精度要求高和测量难度大等特点。
目前,国内飞机部件对接过程中测量定位仍然主要依赖于传统光学测量仪器,如水准仪、光学经纬仪等。随着数字化技术的发展,先进的用于大空间范围测量的数字化测量设备相继出现,如激光跟踪仪、局域GPS、激光雷达等,较之传统的测量方法,在测量精度和易用性等方面,数字化测量设备可以更好地满足飞机装配过程中的测量要求。
激光跟踪仪的基本测量原理是激光跟踪目标反射器通过自身的测角系统(水平测角、垂直测角),及激光绝对测距系统来确定空间点目标反射器空间位置的坐标,再通过仪器自身的校准参数和气象补偿参数对测量过程中产生的误差进行补偿,从而得到空间点的坐标。
局域GPS是一种超越传统测量的大尺寸空间测量技术,使用红外脉冲激光发射器,接收器根据激光发射器投射来的激光时间特征参数,计算接收器所在点的角度和位置,并将模拟信号转换成数字脉冲信号,通过无线网络发送给中央控制室的服务器,最后通过局域GPS系统的测量软件处理数据获得高精度的信息,并供远端的多用户共享。它的测量区域并不会受到已安装的激光发射器数量限制,只需增加激光发射器便可扩展测量范围[5]。
激光雷达是一种球坐标系的测量系统,它产生一束聚焦的红外激光投向被测目标,此时在被测目标上产生大量的发射光束,将入射激光返回雷达所经历的时间与复制的入射激光通过内置的已知长度光纤所用时间进行比对,得出被测目标与激光雷达的距离[6]。被测目标的方位角和仰角分别由反射镜和旋转头获取,最后将获得的球坐标转换成直角坐标。
激光跟踪仪、局域GPS、激光雷达都可以用于测量场的建立,具体的选用方案会考虑方便性、测量批量、费用和维护等方面。测量场的建立由飞机的尺寸大小、测量点的位置、测量精度要求和是否需要转站等方面决定。
版权声明
“特别声明:以上作品内容(包括在内的视频、图片或音频)为用户上传并发布,本平台仅提供信息存储空间服务。
Notice: The content above (including the videos, pictures and audios if any) is uploaded and posted by the user , the platform merely provides information storage space services.”
本文地址: http://amtbbs.org/thread-6699-1-1.html
|