当好用户的工艺师,使机床产品能够最大限度地满足用户的需求,不断提高机床的适用性和可靠性以及其使用效益和效率,为用户创造更多的价值,是机床制造企业的终极目标和核心竞争力。因此,聚焦用户需求,研发专有技术就成为机床产业转型升级的重要内涵。
航空制造业、汽车制造业和模具制造业是机床制造商的3大主要服务对象,他们对零件加工精度和效率日益提高的需求不断推动机床技术的发展,是机床产品创新的动力。例如,柔性化自动线、高速高精度加工中心、复合加工和多轴联动数控机床的出现无不与这3个工业部门的需求密切相关。
Ecospeed的成功秘笈
1 聚焦用户需求
现代飞机结构件大多数是薄板类零件,其特点是结构形状复杂,尺寸大、壁厚小、凹穴凹槽多,而且要求质量轻、强度高、表面质量好。通常是由整块铝合金毛坯加工而成,其金属切除的体积高达80%~95%,因此要求机床的切削速度高,主轴功率大,单位时间材料切除率大。一个典型的飞机结构件如图1所示。
图1 典型的飞机结构件
德国DS-Technologie公司(DST)是著名的重型机床制造商,其主导产品是大型龙门式加工中心,设有航空制造部,专门从事飞机结构件的加工工艺研究和航空制造新机床的研发。
DST的研究结果表明,从20世纪70年代的多轴铣床到90年代的龙门式五轴联动加工中心都不能完全满足现代飞机结构件加工的要求。因此,决定研发飞机结构件加工的新型机床——Ecospeed。
首先,需要搞清楚用户存在的问题,通过总结数十年飞机结构件加工的经验,提出用户所期望的机床性能指标,见表1。
过去采用龙门式五轴联动加工中心的基本构思是龙门式铣床的3个移动轴加上铣头的2个回转轴,从而构成五轴联动机床,铣头成为关键。对多种摆角式和回转式铣头进行了分析,对其用于加工飞机结构件时性能进行评价,结果见表2。
性能评价分5级,++为很合适,+为较好,+-为可用,-为较差,--为不合适。可见,无论摆角式还是回转式铣头都存在令人不够满意之处。
2 专有技术:Sprint Z3主轴头
为了从根本上克服摆角式和回转式铣头的缺点,新型Sprint Z3型主轴头采用3杆并联运动机构,其内部的结构如图2所示。
从图中可见,3杆并联运动机构是由3个伺服电动机分别通过滚珠丝杠驱动的、按120°分布的3个移动装置组成。在滚珠丝杠驱动下,滑板各自沿底座上的线性导轨移动,滑板的移动推动可摆动的杆件,再通过万向铰链驱动运动平台,使运动平台上的主轴作Z轴向移动及A轴和B轴方向的偏转。实践证明,这种3杆并联运动机构完全能够满足飞机结构件加工预期性能指标的要求。
应该指出的是,尽管Sprint Z3型主轴头的运动原理是新颖的,但所有零部件,包括伺服电动机、电主轴、线性导轨、轴承和万向铰链都是标准化的零部件,由专业厂家生产,在数控机床中已经获得广泛的应用,从而使三杆并联运动机构主轴头的可靠性能够获得充分保证。安装在立柱上的Sprint Z3型主轴头如图3所示。
图3 安装在立柱上的Sprint Z3主轴头
从图中可见,主轴头由配置在两侧的滚珠丝杠驱动下沿两侧线性导轨升降。采用双丝杠的目的是使驱动力处于主轴部件的重心,提高其动态性能。主轴滑座和立柱都是由钢板焊接而成的、封闭的、轻量化的结构件,以减轻移动时的惯性影响。
在Sprint Z3型主轴头的基础上,构成高性能数控加工中心Ecospeed,其总体配置见图4。从图中可见,机床配置的特点是所有运动都由刀具一侧完成,在加工过程中固定在立式工作台托板上的工件是不移动的。垂直加工可使高速切除的大量切屑得以迅速排走。在工件加工完毕后,托板移到机床一侧的交换和装卸工位,然后翻转90°,使工件可以在水平位置装卸。
图4 Ecospeed高性能数控加工中心
与过去30年使用的多种龙门式铣床和加工中心比较,Ecospeed将零件加工时间缩短了大约6倍,将金属切除率提高了近7倍,如图5所示。
高性能数控加工中心Ecospeed的成功应用使DST公司近年来在飞机结构件加工领域处于世界领先地位。
Zimmermann公司的新一代龙门铣床
1 FZ33龙门铣床
德国Zimmermann公司对其FZ产品系列龙门铣床进行了持续不断的改进和提高,以满足汽车工业和航空工业的新需求。最典型的例子就是新一代的高架移动式龙门铣床FZ33。
这款机型专门设计用于对铝件和复合材料进行5面完全加工,以及对钢件进行五轴联动的高效精加工。通过运用研发的驱动技术和使用最新一代的齿轮齿条驱动系统,并配备高性能直线导轨,加以运动部件质量量化设计使进给速度和加速度等明显提高。通过使用高科技的纤维增强性填充材料,显著地提高了机身承载部件的刚性。机床工作空间是以加工大型飞机结构件和汽车整车模型,X轴计程为40m,Y同轴行程为6m,Z轴行程为3m。
与此相适应,该公司采用了新一代铣头VH2以便充分利用机床其他方面改进所带来的优势,大幅提高的切削参数使FZ33对铝件的大排屑量切削成为可能。新一代的VH2铣头基本具备了高速加工轻合金所需的所有性能:旋转轴的夹紧系统最大限度地强化了粗加工性能,带水冷的高刚性蜗轮蜗杆驱动以及独特的主轴油脂自动补充润滑系统确保了设备的长期稳定可靠性和低维护性。
2 全球首创:M3 ABC铣头
为了解决类似的飞机结构件凹穴凹槽加工的难题,该公司研发了一种具有3个回转轴的铣头M3 ABC,如图6所示。
从图中可见,M3 ABC铣头与传统转角式铣头的区别在于增加了可沿特殊设计的、高精度和高刚度的弧形导轨偏转的B 轴转动,从2自由度变为3自由度。
M3 ABC铣头C轴的回转角度为±360°,A轴可使主轴摆动±110°,而在A轴和C轴之间加入可偏转±15°的B轴,结构非常紧凑。M3 ABC铣头的3个自由度以及足够大的偏转范围使得采用该铣头的ZF100龙门式铣床可实现高柔性的六轴联动加工,而且能够保证刀具处于最佳的空间姿态和使用优化的进给速度进行加工,从而大幅度缩短加工时间,同时获得非常好的表面质量。
这一创新从根本上改变了铝合金、合成材料和模型材料整体加工以及钢和铸铁零件高速加工的概念,克服了长期以来A-C轴转角式铣头在五轴联动加工中的某些局限性。
典型飞机结构件的凹槽往往具有3°~5°斜度的内侧表面,采用A轴和C轴的转角式铣头加工非常不方便,特别是在转角处需要反复调整铣头的姿态。借助具有ABC轴的M3ABC铣头加工这类凹槽却是非常理想的,如图7所示。
传统的具有A轴和C轴的摆角式铣头的主要缺点是在A轴处于0位时出现“死点”,此时铣头的C轴无效,即当铣头在垂直位置时,主轴无法在C轴方向偏转。即使主轴很小的姿态改变,也需要C轴作大的回转才能够实现,明显降低加工效率和零件表面质量。
新型的M3 ABC铣头则不然,即使在加工零件凹穴凹槽的转角处,也能保持恒定的高进给量,从而显著降低刀具的磨损。由于有3个回转轴,只需要最小的转动就能够实现主轴在任何方向、任何角度的姿态变化。此外,不再需要在每一加工循环之后急速撤回C轴,可以简化数控程序和节约大量的主轴姿态调节时间。
在M3 ABC铣头基础上,Zimmermann公司推出了六轴联动的FZ100动梁龙门式铣床,其外观如图8所示。
图8 FZ100动梁龙门式铣床
从图中可见,横梁可沿机床两侧的固定立柱在X轴方向移动,主轴滑座沿横梁在Y轴方向移动,而主轴滑枕在滑座中升降(Z轴)。横梁、主轴滑座和主轴滑枕都采用轻量化设计原理,结构经过反复优化,不仅使机床移动部件的质量较轻,而且在工作时基本恒定,使惯性力的负面影响最小,从而保证了机床的高动态性能。
机床两侧面的立柱是整体结构,最大长度为8m。为了保证结构的高刚性和吸振性,立柱由经过热处理的钢板焊接而成,其中填充有特殊的纤维加强混合物(DemTec),可以保持长期的工作稳定性而无需维护。
这种独特的立柱设计具有高热稳定性和颤振和振动的高阻尼,能够保证零件加工的高尺寸精度和高表面质量,其加工过程的动态性能和工件的轮廓精度远非一般铸铁和焊接钢结构所能比拟。
横梁由两侧立柱顶部的无间隙齿轮齿条机构驱动。这一布局使驱动装置远离加工区域,并且容易采取完善的防护,有利于长期保证工作精度。横梁的最大移动速度可达60m/min,最大加速度为4m/s2。
工作台是整体铸铁件,长度为3800~8800mm,宽度为3000~4000mm,厚度为220mm,直接安装在地基上,以保证其刚性。工作台的最大承重能力为20000kg/m2。
M3 ABC铣头的主轴功率为60kW,最大转速为22000r/min。
趋势与展望
随着用户需求的日益多样化和高性能化,批量生产的通用数控机床遇到了严峻的挑战。未来的发展有两种趋势:一种是以某种通用数控机床为基型增加选件的品种,扩展其功能和用途,由用户加以选择,实现客户化定制生产。另一种是聚焦用户需求,研发专有技术,开发专门化的数控机床,为用户提供全面解决方案。在激烈的市场竞争中,技术的先进性并非唯一的取胜要素,最根本的是机床制造商能不能吃透用户的需求,提供简单而可靠的解决方案,为用户创造更多的价值。应该清楚地认识到,只有机床制造商和用户都有利可得才能够使技术转变为真实的生产力。
创新的专有技术绝非空中楼阁、凭空想象能够研发的,而是建立在可靠的单项技术之上,是若干单元技术的集成。创新更离不开机床制造企业的技术和经验的多年积累,离不开工程师孜孜不倦的钻研。高素质的人才是创新和研发专有技术的最重要的资源。
最后,创新的专有技术的研发还应该充分考虑模块化、可移植性和可重组性,提高其经济效益,使该项新技术能够为不同的用户服务,在不同的领域获得应用,使专有技术的研发带来更大的利润,获得更大的经济回报。